Geospatial modelling of dry season habitats of the malaria vector, Anopheles funestus, in south-eastern Tanzania | Parasites & Vectors

Geospatial modelling of dry season habitats of the malaria vector, Anopheles funestus, in south-eastern Tanzania | Parasites & Vectors

WHO. World malaria report 2022. 2022. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022. Accessed 29 Nov 2023.

Hemingway J, Ranson H. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol. 2000;45:371–91.

Article 
CAS 
PubMed 

Google Scholar 

Hemingway J, Shretta R, Wells TN, Bell D, Djimdé AA, Achee N, et al. Tools and strategies for malaria control and elimination: what do we need to achieve a grand convergence in malaria? PLoS Biol. 2016;14:e1002380.

Article 
PubMed 
PubMed Central 

Google Scholar 

WHO. Larval source management: a supplementary malaria vector control measure: an operational manual. 2013. https://www.afro.who.int/publications/larval-source-management-supplementary-measure-malaria-vector-control-operational. Accessed 25 Jan 2021.

Fillinger U, Lindsay SW. Larval source management for malaria control in Africa: myths and reality. Malar J. 2011;10:1–10.

Article 

Google Scholar 

Ferguson HM, Dornhaus A, Beeche A, Borgemeister C, Gottlieb M, Mulla MS, et al. Ecology: a prerequisite for malaria elimination and eradication. PLoS Med. 2010;7:e1000303.

Article 
PubMed 
PubMed Central 

Google Scholar 

Msugupakulya BJ, Urio NH, Jumanne M, Ngowo HS, Selvaraj P, Okumu FO, et al. Changes in contributions of different Anopheles vector species to malaria transmission in east and southern Africa from 2000 to 2022. Parasit Vectors. 2023;16:408.

Article 
PubMed 
PubMed Central 

Google Scholar 

Kahamba NF, Finda M, Ngowo HS, Msugupakulya BJ, Baldini F, Koekemoer LL, et al. Using ecological observations to improve malaria control in areas where Anopheles funestus is the dominant vector. Malaria J. 2022;21:1–15.

Article 

Google Scholar 

Kaindoa EW, Matowo NS, Ngowo HS, Mkandawile G, Mmbando A, Finda M, et al. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south–eastern Tanzania. PLoS One. 2017;12:e0177807.

Article 
PubMed 
PubMed Central 

Google Scholar 

Finda MF, Limwagu AJ, Ngowo HS, Matowo NS, Swai JK, Kaindoa E, et al. Dramatic decreases of malaria transmission intensities in Ifakara, south-eastern Tanzania since early 2000s. Malar J. 2018;17:1–18.

Article 

Google Scholar 

Matowo NS, Martin J, Kulkarni MA, Mosha JF, Lukole E, Isaya G, et al. An increasing role of pyrethroid-resistant Anopheles funestus in malaria transmission in the Lake Zone Tanzania. Scient Rep. 2021;11:13457.

Article 
ADS 
CAS 

Google Scholar 

Charlwood JD. The ecology of malaria vectors. Boca Raton: CRC Press; 2019.

Book 

Google Scholar 

Takken W, Koenraadt CJ. Ecology of parasite-vector interactions. Wageningen: Wageningen Academic Publishers; 2013.

Book 

Google Scholar 

Pinda PG, Eichenberger C, Ngowo HS, Msaky DS, Abbasi S, Kihonda J, et al. Comparative assessment of insecticide resistance phenotypes in two major malaria vectors, Anopheles funestus and Anopheles arabiensis in south-eastern Tanzania. Malar J. 2020;19:1–11.

Article 

Google Scholar 

Kweka EJ, Munga S, Himeidan Y, Githeko AK, Yan G. Assessment of mosquito larval productivity among different land use types for targeted malaria vector control in the western Kenya highlands. Parasit Vectors. 2015;8:1–8.

Article 

Google Scholar 

Debrah I, Afrane YA, Amoah LE, Ochwedo KO, Mukabana WR, Zhong D, et al. Larval ecology and bionomics of Anopheles funestus in highland and lowland sites in western Kenya. PLoS One. 2021;16:e0255321.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Nambunga IH, Ngowo HS, Mapua SA, Hape EE, Msugupakulya BJ, Msaky DS, et al. Aquatic habitats of the malaria vector Anopheles funestus in rural south-eastern Tanzania. Malar J. 2020;19:1–11.

Article 

Google Scholar 

Minakawa N, Sonye G, Dida GO, Futami K, Kaneko S. Recent reduction in the water level of Lake Victoria has created more habitats for Anopheles funestus. Malar J. 2008;7:1–6.

Article 

Google Scholar 

Mala AO, Irungu LW, Shililu JI, Muturi EJ, Mbogo CC, Njagi JK, et al. Dry season ecology of Anopheles gambiae complex mosquitoes at larval habitats in two traditionally semi-arid villages in Baringo, Kenya. Parasit Vectors. 2011;4:1–11.

Article 

Google Scholar 

WorldData.info. Climate in Morogoro, Tanzania. 2021. https://www.worlddata.info/africa/tanzania/climate-morogoro.php. Accessed 10 Oct 2021.

Mapua SA, Hape EE, Kihonda J, Bwanary H, Kifungo K, Kilalangongono M, et al. Persistently high proportions of Plasmodium-infected Anopheles funestus mosquitoes in two villages in the Kilombero valley South-Eastern Tanzania. Parasite Epidemiol Control. 2022;18:e00264.

Article 
PubMed 
PubMed Central 

Google Scholar 

Finda MF, Moshi IR, Monroe A, Limwagu AJ, Nyoni AP, Swai JK, et al. Linking human behaviours and malaria vector biting risk in south-eastern Tanzania. PLoS One. 2019;14:e0217414.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Swai JK, Mmbando AS, Ngowo HS, Odufuwa OG, Finda MF, Mponzi W, et al. Protecting migratory farmers in rural Tanzania using eave ribbons treated with the spatial mosquito repellent, transfluthrin. Malaria J. 2019;18:1–13.

Article 

Google Scholar 

Gillies MT, Wilkes TJ. A study of the age-composition of populations of Anopheles gambiae Giles and An. funestus Giles in North-Eastern Tanzania. Bull Entomol Res. 1965;56:237–62.

Article 
CAS 
PubMed 

Google Scholar 

Gillies MT, De Meillon B (1968) The Anophelinae of Africa south of the Sahara (Ethiopian zoogeographical region). South African Institute for Medical Research: Johannesburg; 1968.

Gillies MT, Coetzee M. A supplement to the Anophelinae of Africa South of the Sahara. Publ S Afr Inst Med Res. 1987;55:1–143.

Google Scholar 

Meyer D, Tachikawa T, Kaku M, Iwasaki A, Gesch D, Oimoen M, et al. Aster global digital elevation model version 2–summary of validation results. Japan-US ASTER Science Team; 2011. p. 1–26.

Venter ZS, Barton DN, Chakraborty T, Simensen T, Singh G. Global 10 m land use land cover datasets: a comparison of Dynamic World, World Cover and ESRI Land Cover. Remote Sensing. 2022;14:4101.

Article 
ADS 

Google Scholar 

Brown CF, Brumby SP, Guzder-Williams B, Birch T, Hyde SB, Mazzariello J, et al. Dynamic World, near real-time global 10 m land use land cover mapping. Scientific Data. 2022;9:251.

Article 
PubMed Central 

Google Scholar 

Schiavina M, Freire S, MacManus K. GHS-POP R2022A—GHS Population Grid Multitemporal (1975–2030). 2022. European Commission, Joint Research Centre. http://data.europa.eu/89h/d6d86a90-4351-4508-99c1-cb074b022c4a. Accessed 19 Aug 2023.

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing:Vienna; 2019.

QGIS Development Team AE. QGIS geographic information system. Open source geospatial foundation project. 2018. http://qgis.osgeo.org. Accessed 10 Feb 2020.

Chang, W., Cheng, J., Allaire, J., Xie, Y., & McPherson, J. (2022). shiny: Web Application Framework for R. R package version 1.5. 0. 2020. Available online at http://shiny.rstudio.com/.

Hosmer Jr DW, Lemeshow S, Sturdivant RX. Applied logistic regression. John Wiley & Sons: Hoboken; 2013.

Dia I, Guelbeogo MW, Ayala D. Advances and perspectives in the study of the malaria mosquito Anopheles funestus. Anopheles mosquitoes – New Insights into Malaria Vectors, InTech, 24 July 2013. Crossref, https://doi.org/10.5772/55389.

Mwangangi JM, Mbogo CM, Muturi EJ, Nzovu JG, Githure JI, Yan G, et al. Spatial distribution and habitat characterisation of Anopheles larvae along the Kenyan coast. J Vector Borne Dis. 2007;44:44.

PubMed 
PubMed Central 

Google Scholar 

Omukunda E, Githeko A, Ndong’a MF, Mushinzimana E, Yan G. Effect of swamp cultivation on distribution of anopheline larval habitats in Western Kenya. J Vector Borne Dis. 2012;49:61–71.

PubMed 
PubMed Central 

Google Scholar 

Mendis C, Jacobsen JL, Gamage-Mendis A, Bule E, Dgedge M, Thompson R, et al. Anopheles arabiensis and An. funestus are equally important vectors of malaria in Matola coastal suburb of Maputo, southern Mozambique. Med Vet Entomol. 2000;14:171–80.

Article 
CAS 
PubMed 

Google Scholar 

Minakawa N, Mutero CM, Githure JI, Beier JC, Yan G. Spatial distribution and habitat characterization of Anopheline mosquito larvae in Western Kenya. Am J Trop Med Hyg. 1999;61:1010–6.

Article 
CAS 
PubMed 

Google Scholar 

Munga S, Yakob L, Mushinzimana E, Zhou G, Ouna T, Minakawa N, et al. Land use and land cover changes and spatiotemporal dynamics of anopheline larval habitats during a four-year period in a highland community of Africa. Am J Trop Med Hyg. 2009;81:1079.

Article 
PubMed 

Google Scholar 

Charlwood JD, Vij R, Billingsley PF. Dry season refugia of malaria-transmitting mosquitoes in a dry savannah zone of east Africa. Am J Trop Med Hyg. 2000;62:726–32.

Article 
CAS 
PubMed 

Google Scholar 

Lupenza ET, Kihonda J, Limwagu AJ, Ngowo HS, Sumaye RD, Lwetoijera DW. Using pastoralist community knowledge to locate and treat dry-season mosquito breeding habitats with pyriproxyfen to control Anopheles gambiae sl and Anopheles funestus sl in rural Tanzania. Parasitol Res. 2021;120:1193–202.

Article 
PubMed 

Google Scholar 

Silver JB. Mosquito ecology: field sampling methods. Springer Science & Business Media: Berlin/Heidelberg; 2007.

Zengenene MP, Soko W, Brooke BD, Koekemoer LL, Govere J, Mazarire TT, et al. Anopheles species composition and breeding habitat characterisation in Chiredzi District Zimbabwe. Afr Entomol. 2020;28:84–94.

Article 

Google Scholar 

Ramsdale CD, Fontaine RE, Russell E, WHO. Ecological investigations of Anopheles gambiae and Anopheles funestus. https://iris.who.int/handle/10665/65590. Accessed 15 Nov 2023.

Service, M. W. Agricultural development and arthropod-borne diseases: a review. Rev Saude Publica. 1991;25:165–78.

Article 
CAS 
PubMed 

Google Scholar 

Kar NP, Kumar A, Singh OP, Carlton JM, Nanda N. A review of malaria transmission dynamics in forest ecosystems. Parasit Vectors. 2014;7:1–12.

Article 

Google Scholar 

Burkett-Cadena ND, Vittor AY. Deforestation and vector-borne disease: forest conversion favors important mosquito vectors of human pathogens. Basic Appl Ecol. 2018;26:101–10.

Article 
PubMed 

Google Scholar 

Yasuoka J, Levins R. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. Am J Trop Med Hyg. 2007;76:450–60.

Article 
PubMed 

Google Scholar 

Nicholas K, Bernard G, Bryson N, Mukabane K, Kilongosi M, Ayuya S, et al. Abundance and distribution of malaria vectors in various aquatic habitats and land use types in Kakamega County, highlands of western Kenya. Ethiop J Health Sci. 2021;31:247-56. https://doi.org/10.4314/ejhs.v31i2.7.

Ferreira CP, Godoy WA, editors. Ecological modelling applied to entomology. Vol. 1: Piracicaba. Springer: Berlin/Heidelberg; 2014. p. 219–59.

Sattler MA, Mtasiwa D, Kiama M, Premji Z, Tanner M, Killeen GF, et al. Habitat characterization and spatial distribution of Anopheles sp. mosquito larvae in Dar es Salaam (Tanzania) during an extended dry period. Malar J. 2005;4:1–15.

Article 

Google Scholar 

Gimnig JE, Ombok M, Kamau L, Hawley WA. Characteristics of larval anopheline (Diptera: Culicidae) habitats in Western Kenya. J Med Entomol. 2001;38:282–8.

Article 
CAS 
PubMed 

Google Scholar 

Paaijmans KP, Jacobs AFG, Takken W, Heusinkveld BG, Githeko AK, Dicke M, et al. Observations and model estimates of diurnal water temperature dynamics in mosquito breeding sites in western Kenya. Hydrol Proc Int J. 2008;22:4789–801.

Article 
ADS 

Google Scholar 

Smith MW, Willis T, Alfieri L, James WHM, Trigg MA, Yamazaki D, et al. Incorporating hydrology into climate suitability models changes projections of malaria transmission in Africa. Nat Commun. 2020;11:4353.

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hardy AJ, Gamarra JG, Cross DE, Macklin MG, Smith MW, Kihonda J, et al. Habitat hydrology and geomorphology control the distribution of malaria vector larvae in rural Africa. PLoS One. 2013;8:e81931.

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar 

Hardy A, Mageni Z, Dongus S, Killeen G, Macklin MG, Majambare S, et al. Mapping hotspots of malaria transmission from pre-existing hydrology, geology, and geomorphology data in the pre-elimination context of Zanzibar, United Republic of Tanzania. Parasit Vectors. 2015;8:1–15.

Article 

Google Scholar 

Byrne I, Aure W, Manin BO, Vythilingam I, Ferguson HM, Drakeley CJ, et al. Environmental and spatial risk factors for the larval habitats of Plasmodium knowlesi vectors in Sabah Malaysian Borneo. Sci Rep. 2021;11:11810.

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Minakshi M, Bhuiyan T, Kariev S, Kaddumukasa M, Loum D, Stanley NB, et al. High-accuracy detection of malaria mosquito habitats using drone-based multispectral imagery and Artificial Intelligence (AI) algorithms in an agro-village peri-urban pastureland intervention site (Akonyibedo) in Unyama SubCounty, Gulu District, Northern Uganda. J Public Health Epidemiol. 2020;12:202–17.

Article 

Google Scholar 

Hardy A, Makame M, Cross D, Majambere S, Msellem M. Using low-cost drones to map malaria vector habitats. Parasit Vectors. 2017;10:1–13.

Article 

Google Scholar 

Source link : https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-024-06119-6

Author :

Publish date : 2024-01-29 08:00:00

Copyright for syndicated content belongs to the linked Source.

Exit mobile version