Wickens, G. E. The Baobabs: Pachycauls of Africa, Madagascar and Australia (Springer, 2008).
Baum, D. A., Small, R. L. & Wendel, J. F. Biogeography and floral evolution of baobabs (Adansonia, Bombacaceae) as inferred from multiple data sets. Syst. Biol.47, 181–207 (1998).
Google Scholar
Karimi, N. et al. Reticulate evolution helps explain apparent homoplasy in floral biology and pollination in baobabs (Adansonia; Bombacoideae; Malvaceae). Syst. Biol.69, 462–478 (2020).
Google Scholar
Patrut, A. et al. Radiocarbon dating of a very large African baobab. Tree Physiol.27, 1569–1574 (2007).
Google Scholar
Gebauer, J., El-Siddig, K. & Ebert, G. Baobab (Adansonia digitata L.): a review on a multipurpose tree with promising future in the Sudan. Eur. J. Hort. Sci.67, 155–160 (2002).
Google Scholar
Duvall, C. S. Human settlement and baobab distribution in south-western Mali. J. Biogeogr.34, 1947–1961 (2007).
Rangan, H. et al. New genetic and linguistic analyses show ancient human influence on baobab evolution and distribution in Australia. PLoS ONE10, e0119758 (2015).
Google Scholar
Baum, D. A. The comparative pollination and floral biology of baobabs (Adansonia—Bombacaceae). Ann. Mo. Bot. Gard.82, 322–348 (1995).
Baum, D. A. A systematic revision of Adansonia (Bombacaceae). Ann. Mo. Bot. Gard.82, 440–471 (1995).
Antonelli, A. et al. Madagascar’s extraordinary biodiversity: evolution, distribution and use. Science378, eabf0869 (2022).
Google Scholar
Baum, D. A. & Oginuma, K. A review of chromosome numbers in Bombacaceae with new counts for Adansonia. Taxon43, 11–20 (1994).
Conover, J. L. et al. A Malvaceae mystery: a mallow maelstrom of genome multiplications and maybe misleading methods? J. Integr. Plant Biol.61, 12–31 (2019).
Google Scholar
Marinho, R. C. et al. Do chromosome numbers reflect phylogeny? New counts for Bombacoideae and a review of Malvaceae s.l. Am. J. Bot.101, 1456–1465 (2014).
Google Scholar
Cvetković, T. et al. Phylogenomics resolves deep subfamilial relationships in Malvaceae s.l. Genes Genomes Genet.11, jkab136 (2021).
Yoder, A. D. & Nowak, M. D. Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell. Annu. Rev. Ecol. Evol. Syst.37, 405–431 (2016).
Peter, H. et al. Evolution and diversity of copy number variation in the great ape lineage. Genome Res.23, 1373–1382 (2013).
Edelman, N. B. et al. Genomic architecture and introgression shape a butterfly radiation. Science366, 594–599 (2019).
Google Scholar
Meleshko, O. et al. Extensive genome-wide phylogenetic discordance is due to incomplete lineage sorting and not ongoing introgression in a rapidly radiated bryophyte genus. Mol. Biol. Evol.38, 2750–2766 (2021).
Google Scholar
Wen, D. Q., Yu, Y., Zhu, J. F. & Nakhleh, L. Inferring phylogenetic networks using PhyloNet. Syst. Biol.67, 735–740 (2018).
Google Scholar
Green, R. E. A draft sequence of the Neandertal genome. Science328, 710–722 (2010).
Google Scholar
Leong Pock-Tsy, J. M. et al. Nuclear microsatellite variation in Malagasy baobabs (Adansonia, Bombacoideae, Malvaceae) reveals past hybridization and introgression. Ann. Bot.112, 1759–1773 (2013).
Google Scholar
Whitlock, M. C. Fixation of new alleles and the extinction of small populations: drift load, beneficial alleles and sexual selection. Evolution54, 1855–1861 (2000).
Google Scholar
Barlow, A. et al. Partial genomic survival of cave bears in living brown bears. Nat. Ecol. Evol.2, 1563–1570 (2018).
Google Scholar
del Pozo, J. C. & Ramirez-Parra, E. Whole genome duplications in plants: an overview from Arabidopsis. J. Exp. Bot.66, 6991–7003 (2015).
Google Scholar
Palkopoulou, E. et al. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr. Biol.25, 1395–1400 (2015).
Google Scholar
Ceballos, F. C., Hazelhurst, S. & Ramsay, M. Assessing runs of homozygosity: a comparison of SNP array and whole genome sequence low coverage data. BMC Genomics19, 106 (2018).
Google Scholar
Bell, K. L. et al. Genetic diversity and biogeography of the baobab Adansonia gregorii (Malvaceae: Bombacoideae). Aust. J. Bot.62, 164–174 (2014).
Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature475, 493–496 (2011).
Google Scholar
Sepkoski, J. J. Jr., McKinney, F. K. & Lidgard, S. Competitive displacement among post-Paleozoic cyclostome and cheilostome bryozoans. Paleobiology26, 7–18 (2000).
Google Scholar
Roberts, G. G., Paul, J. D., White, N. & Winterbourne, J. Temporal and spatial evolution of dynamic support from river profiles: a framework for Madagascar. Geochem. Geophys. Geosyst.13, Q04004 (2012).
Google Scholar
Stephenson, S. N. et al. Cenozoic dynamic topography of Madagascar. Geochem. Geophys. Geosyst.22, e2020GC009624 (2021).
Google Scholar
Johnson, T. C. et al. A progressively wetter climate in southern East Africa over the past 1.3 million years. Nature537, 220–224 (2016).
Google Scholar
Chikhi, L. et al. The IICR (inverse instantaneous coalescence rate) as a summary of genomic diversity: insights into demographic inference and model choice. Heredity120, 13–24 (2018).
Google Scholar
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land area. Int. J. Climatol.37, 4302–4315 (2017).
Whittaker, R. H. Dominance and diversity in land plant communities: numerical relations of species express the importance of competition in community function and evolution. Science147, 250–260 (1965).
Google Scholar
Aguilar, R. et al. Habitat fragmentation reduces plant progeny quality: a global synthesis. Ecol. Lett.22, 1163–1173 (2019).
Google Scholar
Phillips, S. J.,erson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model.190, 231–259 (2006).
Fernández‐Palacios, J. M. et al. Towards a glacial‐sensitive model of island biogeography. Glob. Ecol. Biogeogr.25, 817–830 (2016).
Pico, T., Creveling, J. R. & Mitrovica, J. X. Sea-level records from the US mid-Atlantic constrain Laurentide Ice Sheet extent during Marine Isotope Stage 3. Nat. Commun.8, 15612 (2017).
Google Scholar
Borreggine, M. et al. Sea-level rise in Southwest Greenland as a contributor to Viking abandonment. Proc. Natl Acad. Sci. USA120, e2209615120 (2023).
Google Scholar
Miller, K. G. et al. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci. Adv.6, eaaz1346 (2020).
Google Scholar
Liu, Y., Wang, Y., Willett, S. D., Zimmermann, N. E. & Pellissier, L. Escarpment evolution drives the diversification of the Madagascar flora. Science383, 653–658 (2024).
Google Scholar
Leong Pock-Tsy, J. et al. Chloroplast DNA phylogeography suggests a West African centre of origin for the baobab, Adansonia digitata L. (Bombacoideae, Malvaceae). Mol. Ecol.18, 1707–1715 (2009).
Google Scholar
Parisod, C., Holderegger, R. & Brochmann, C. Evolutionary consequences of autopolyploidy. New Phytol.186, 5–17 (2010).
Google Scholar
Marques, D. A., Meier, J. I. & Seehausen, O. A combinatorial view on speciation and adaptive radiation. Trends Ecol. Evol.34, 531–544 (2019).
Google Scholar
Carvalho-Sobrinho, J. G. et al. Revisiting the phylogeny of Bombacoideae (Malvaceae): novel relationships, morphologically cohesive clades and a new tribal classification based on multilocus phylogenetic analyses. Mol. Phylogenet. Evol.101, 56–74 (2016).
Google Scholar
Vieilledent, G. et al. Vulnerability of baobab species to climate change and effectiveness of the protected area network in Madagascar: towards new conservation priorities. Biol. Conserv.166, 11–22 (2013).
Goodman, S. M. The New Natural History of Madagascar (Princeton Univ. Press, 2022).
Masters, J. C. et al. Biogeographic mechanisms involved in the colonization of Madagascar by African vertebrates: rifting, rafting and runways. J. Biogeogr.48, 492–510 (2021).
Ali, J. R. & Hedges, S. B. A review of geological evidence bearing on proposed Cenozoic land connections between Madagascar and Africa and its relevance to biogeography. Earth Sci. Rev.232, 104103 (2022).
Xin, H. P. et al. A genome for Cissus illustrates features underlying the evolutionary success in dry savannas. Hort. Res.9, uhac208 (2022).
Chen, Y. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience7, gix120 (2018).
Marcais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics27, 764–770 (2011).
Google Scholar
Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics33, 2202–2204 (2017).
Google Scholar
Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun.11, 1432 (2020).
Google Scholar
Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods13, 1050–1054 (2016).
Google Scholar
Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE9, e112963 (2014).
Google Scholar
Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods18, 170–175 (2021).
Google Scholar
Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst.3, 95–98 (2016).
Google Scholar
Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science356, 92–95 (2017).
Google Scholar
Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA6, 11 (2015).
Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA117, 9451–9457 (2020).
Google Scholar
Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res.35, W265–W268 (2007).
Google Scholar
Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res.27, 573–580 (1999).
Google Scholar
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol.37, 907–915 (2019).
Google Scholar
Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol.20, 278 (2019).
Google Scholar
Cheng, C. Y. et al. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J.89, 789–804 (2017).
Google Scholar
Du, X. et al. Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nat. Genet.50, 796–802 (2018).
Google Scholar
Teh, B. T. et al. The draft genome of tropical fruit durian (Durio zibethinus). Nat. Genet.49, 1633–1641 (2017).
Google Scholar
Argout, X. et al. The cacao Criollo genome v2. 0: an improved version of the genome for genetic and functional genomic studies. BMC Genomics18, 730 (2017).
Udall, J. A. et al. De novo genome sequence assemblies of Gossypium raimondii and Gossypium turneri. Genes Genomics Genet.9, 3079–3085 (2019).
Google Scholar
Keilwagen, J. et al. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res.44, e89–e89 (2016).
Google Scholar
Stanke, M., Schöffmann, O., Morgenstern, B. & Waack, S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinf.7, 62 (2006).
Korf, I. Gene finding in novel genomes. BMC Bioinf.5, 59 (2004).
Campbell, M. S., Holt, C., Moore, B. & Yandell, M. Genome annotation and curation using MAKER and MAKER‐P. Curr. Protoc. Bioinform.48, 4–11 (2014).
Gremme, G., Steinbiss, S. & Kurtz, S. GenomeTools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans. Comput. Biol. Bioinform.10, 645–656 (2013).
Google Scholar
Zhang, R. G. et al. TEsorter: an accurate and fast method to classify LTR-retrotransposons in plant genomes. Hort. Res.9, uhac017 (2022).
Neumann, P., Novak, P., Hostakova, N. & Macas, J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mobile DNA10, 1 (2019).
Google Scholar
Ou, S. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol.176, 1410–1422 (2018).
Google Scholar
Tang, H. et al. Synteny and collinearity in plant genomes. Science320, 486–488 (2008).
Google Scholar
Hasegawa, M., Kishino, H. & Yano, T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol.22, 160–174 (1985).
Google Scholar
Huang, S. et al. The genome of the cucumber, Cucumis sativus L. Nat. Genet.41, 1275–1281 (2009).
Google Scholar
Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol.24, 1586–1591 (2007).
Google Scholar
Li, L., Stoeckert, C. J. Jr. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res.13, 2178–2189 (2003).
Google Scholar
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res.32, 1792–1797 (2004).
Google Scholar
Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics17, 754–755 (2001).
Google Scholar
Hernández-Gutiérrez, R. & Magallón, S. The timing of Malvales evolution: incorporating its extensive fossil record to inform about lineage diversification. Mol. Phylo. Evol.140, 106606 (2019).
Mirarab, S. et al. ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics30, i541–i548 (2014).
Google Scholar
Blanchette, M. et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res.14, 708–715 (2004).
Google Scholar
Shimodaira, H. & Hasegawa, M. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics17, 1246–1247 (2001).
Google Scholar
Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res.45, e18 (2017).
Google Scholar
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics25, 1754–1760 (2009).
Google Scholar
Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience10, giab008 (2021).
Google Scholar
Broad Institute. Picard Toolkit. GitHub https://broadinstitute.github.io/picard/ (2019).
van der Auwera, G. A. From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinform.43, 11.10.1–11.10.33 (2013).
Gao, Y. et al. De novo genome assembly of the red silk cotton tree (Bombax ceiba). Gigascience7, giy051 (2018).
Google Scholar
Suvakov, M., Panda, A., Diesh, C., Holmes, I. & Abyzov, A. CNVpytor: a tool for copy number variation detection and analysis from read depth and allele imbalance in whole-genome sequencing. GigaScience10, giab074 (2021).
Malinsky, M., Matschiner, M. & Svardal, H. Dsuite—fast D-statistics and related admixture evidence from VCF files. Mol. Ecol. Resour.21, 584–595 (2021).
Google Scholar
Than, C., Ruths, D. & Nakhleh, L. PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinf.9, 322 (2008).
Yu, Y. & Nakhleh, L. A maximum pseudo-likelihood approach for phylogenetic networks. BMC Genomics16, S10 (2015).
Google Scholar
Haubold, B., Pfaffelhuber, P. & Lynch, M. mlRho—a program for estimating the population mutation and recombination rates from shotgun-sequenced diploid genomes. Mol. Ecol.19, 277–284 (2010).
Google Scholar
Liu, S. et al. Ancient and modern genomes unravel the evolutionary history of the rhinoceros family. Cell184, 4874–4885 (2021).
Google Scholar
Wan, J. N. et al. Modeling impacts of climate change on the potential distribution of six endemic baobab species in Madagascar. Plant Divers.43, 117–124 (2021).
Google Scholar
Pearson, K. Notes on the history of correlation. Biometrika13, 25e45 (1920).
Vargas-Jaimes, J. et al. Impact of climate and land cover changes on the potential distribution of four endemic salamanders in Mexico. J. Nat. Conserv.64, 126066 (2021).
Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr.21, 481–497 (2012).
Wang, Y. et al. Plants maintain climate fidelity in the face of dynamic climate change. Proc. Natl Acad. Sci. USA120, e2201946119 (2023).
Google Scholar
Di Cola, V. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography40, 774–787 (2017).
Google Scholar
Chen, T. et al. The Genome Sequence Archive family: toward explosive data growth and diverse data types. Genom. Proteom. Bioinform.19, 578–583 (2021).
CNCB-NGDC Members and Partners. Database resources of the National Genomics Data Center, China National Center for Bioinformation in 2023. Nucleic Acids Res.51, D18–D28 (2023).
Wan, J. N. Genome sequencing of baobabs. figshare https://doi.org/10.6084/m9.figshare.25422502.v2 (2024).
Source link : https://www.nature.com/articles/s41586-024-07447-4
Author :
Publish date : 2024-05-15 07:00:00
Copyright for syndicated content belongs to the linked Source.